
Image formation in the electron microscope. II. The application of transfer theory to a

consideration of inelastic electron scattering

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1971 J. Phys. A: Gen. Phys. 4 798

(http://iopscience.iop.org/0022-3689/4/6/006)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/4/6
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Image formation in the electron microscope 
11. The application of transfer theory to a consideration of 
inelastic electron scattering 

D. L. MISELL 
Department of Physics, Queen Elizabeth College, London W8, UK 
M S .  receiaed 15th May 1971 

Abstract. The application of transfer theory to image formation by the 
inelastic component of the transmitted electron beam is discussed, The analysis 
includes the effects of chromatic aberration on the final image. In particular, 
it is shown that the chromatic aberration effect due to the inelastic component 
may be effectively cancelled by underfocus of the objective lens. 

In relation to the formation of image by the inelastically scattered electrons, 
the coherence and the localization of the inelastically scattered wave is dis- 
cussed. 

1. Introduction 
In  this paper an attempt is made to formulate the wave theory of image formation 

for inelastically scattered electrons. The  basic approach represents an extension of 
transfer theory (Lenz 1965), as applied to elastic electron scattering, to a consideration 
of the inelastic component of the transmitted electron beam. T o  date the main interest 
in the inelastic component has been its effect on the elastic component of the scatteied 
electron beam. Following the suggestion of Slater (1937) inelastic electron scattering 
is included as an absorption effect in the elastic scattering formalism by the use of a 
complex potential. I n  this way the effects of the various inelastic processes on the 
Fourier coefficients of the crystal lattice potential have been calculated. The quantum 
mechanical derivation of the complex potential is given by Yoshioka (1957) who speci- 
fically treated atomic excitations. More recently calculations have been made on the 
contribution to the imaginary part of the Fourier coefficients by plasmon excitation 
(eg Radi 1970), phonon excitations (thermal diffuse scattering eg Humphreys and 
Hirsch 1968). In  relation to the image formed by the inelastically scattered electrons, 
a significant amount of theoretical work exists on the preservation of diffraction con- 
trast by small angle inelastic scattering (Fujimoto and Kainuma 1963, Fukuhara 1963, 
Howie 1963, 1970, Cundy et al. 1969, Humphreys and Whelan 1969). This theoretical 
work and experimental results on the preservation of image contrast by the inelastic 
component will be considered in the context of the present method for the calculation 
of the image intensity (§  2). $ 3  will consider in detail the calculation of the inelasti- 
cally scattered wave for inclusion into the image intensity integral; of particular 
relevance will be the consideration of the localization of the inelastic scattering pro- 
cesses. I n  § 4 the possibility of coherence of the inelastic component within a given 
energy loss band is included into the analysis of $ 2. The effect of chromatic aberra- 
tion on the image formed by the inelastic component is discussed in 4 5 .  Formally 
the effects of the spatial and chromatic incoherence of the incident electron beam may 
be included into the calculation of the inelastic image intensity ( 4  6). 

The  only previous calculations on image formation by the inelastic component, 
including chromatic aberration have been made within the geometrical approximation 
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(Haine 1957, Sahashi 1969, Crick and Misell 1971, Nagata and Hama 1971). In  
these papers, the complete incoherence of the inelastically scattered wave is assumed 
and diffraction effects at the objective aperture are neglected. However, the con- 
clusions of the work of Crick and Misell (1971) on the chromatic aberration due to 
the inelastic component are consistent with the present analysis (see $ 5 ) .  

2. Image formation by the inelastic component. Coherence interval AK 
is zero 
The incident electron beam is described by a plane wave exp(iK, . r) ,  where K O  

is the incident wavevector of modulus 2.ir/Xo; the incident beam is spatially coherent 
( K O  is constant) and monochromatic (KO is constant). The scattered electron wave 
is #,(K,  K,  r , ) ,  where K and K refer to the angular and energy characteristics of the 
inelastically scattered wave immediately after the object. It is assumed that the 
scattered electron wave carries information on the electron scattering properties of 
the object at r , .  The potential distribution at ro  may be an averaged effect due to a 
delocalization of the electrons in the solid (see $ 3 for a discussion on this problem). 
In  order to calculate the image intensity, it is necessary to decide on the phase relation 
between electrons with different K and K. It is most unlikely that the inelastic wave 
exhibits coherence with the unscattered and elastic waves (eg Howie 1963). If it is 
assumed that electrons which have been scattered inelastically the same number of 
times are spatially coherent, then the dependence of $, on K may be omitted, pro- 
vided that $, is separated into terms, each representing a given number of inelastic 
interactions, that is 

m 

l # o ( K ,  ro)12 = c l#n(K, r o l l 2  (1) 
n = l  

and the image wavefunctions corresponding to different n are superimposed in- 
coherently. A further reason for the incoherent superposition relates to the complete 
lack of experimental evidence for the coherence of electrons with a given K but with 
different n.  The  absence of any phase relationship between electrons which have 
made a different number of inelastic scattering events is discussed by Howie (1963). 
The  only remaining problem is the coherence of electrons with a given n but with 
differing K. There is a significant amount of experimental evidence on the preserva- 
tion of diffraction contrast by inelastic electron scattering in single crystal specimens 
(Kamiya and Uyeda 1961). Of the more recent experimental work on single crystal 
specimens, there is evidence for the preservation of diffraction contrast by plasmon scat- 
tering (Watanabe and Uyeda 1962, Castaing et al. 1966a,b,c, Cundy et al. 1969, Colliex 
and Jouffrey 1970), one electron excitations (Cundy et al. 1969), phonon excitations 
(quasielastic scattering, weak preservation, eg Castaing et al. 1966b,c, Cundy et 
al. 1967), x ray absorption processes (Colliex and Jouffrey 1970). The  requirement for 
contrast preservation (in a two-beam dynamical theory) is that the inelastically 
scattered wave (wavevector qn) should be coherent with the diffracted wave, q,+ 2ng 
(g is the reciprocal lattice vector). However, there is no direct evidence for electrons 
which have loss energy E(K)  being coherent with electrons having lost energy 
E+ hE(K+ AK). The fact that diffraction contrast due to the inelastic scattering is 
weaker than that produced by the elastic scattering may be due to this incoherent 
superposition of electrons with different K. Also it is not often stated whether the 
objective lens was refocused for these filtered images (or equivalently the high tension 
voltage raised); the effect of the chromatic aberration on the inelastic image could 
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give rise to a loss in resolution (equivalent to a decrease in contrast, see also $5) ,  
particularly for images formed from electrons which have excited core electrons 
(x ray absorption processes, see eg Colliex and Jouffrey 1970). Contrast preservation 
in the selected energy images of amorphous specimens and polycrystalline specimens 
(eg Watanabe and Uyeda 1962, Castaing et al. 1965, Crewe 1970, Colliex and Jouffrey 
1970) and notably for a carbonaceous specimen (Castaing et al. 1965) and for a 
biological specimen (Stroud et al. 1969) does not necessarily represent strong evidence 
for the phase coherence of the inelastic component. The results for amorphous 
specimens may be explained on the basis of scattering contrast; because inelastic 
electron scattering is very peaked in the small-angle region, image contrast is expected 
to be inferior to that contrast obtained for the elastic component. 

On the basis of the above discussion, it will be initially assumed that electrons 
with different K are incoherent. The  modification to this analysis for partial co- 
herence will be given in 4 4. The image intensityji(ri) = l$i(ri)/z is calculated from 

x dr, dr,‘ d K  (2) 
where G is dependent only on the electron optical properties of the microscope for 
spatially and chromatically coherent illumination (see Lenz 1965, Misell 1971, to be 
referred to as I). The  upper limit for the K integral is KO,  representing electrons 
which have lost no energy. 

The equation (2) forji(ri) may be rewritten in terms of the Fourier transforms of 
$n and G as 

x 

where 
(3) 

Sn(E ,  U) = 

T ( E ,  U) = 

$n(K, r,)  exp(2riv . r,) dr, 

G(K, r,) exp(2rriv . r,) dr,. 
(4) 

The integral over K has been replaced by an integral over E ;  energy loss processes 
correspond to E > 0 and for fast electrons (20-100 keV), the probability of energy gain 
is considered negligible. The  upper limit on the E integral, E ,  has been replaced 
by an infinite limit. 

T(E,  U) is the wave aberration function including the effects of the spherical aber- 
ration, chromatic aberration and defocusing of the objective lens (equation (41) of I). 
Sn(E,v) represents the scattered wave in the back focal plane of the objective lens 
for the n times inelastically scattered electron. Equation (3) is transformed from the 
variable v to real angular coordinates 0 (in the back focal plane), where 

2 T V  e = -  
K ( 5 )  
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to give the following equation for ji(ri) : 

i K  
x exp( - % ( 0 - 0 ’ ) .  r , )  d0d0‘dE.  (6) 

[@.,(E, 0)j2 represents the intensity distribution of an electron scattered n times in- 
elastically in the specimen. H(E, 0) is given by (see I) 

1 
M 

H(E,  0) = - exp{ - iKy(E, 0)}0(0) 

with 
C,d4 C,Ed2 Afd2 +-+---. 

2 y(E, 0) = - 
4 2EO 

(7) 

The  variation of K with the energy loss is not negligible as was the case in considering 
the thermal energy distribution. However, the variation of K with E, which is 
approximately E/2E0, affects only the exponential phase factors in equation (6) and 
to a good approximation, K may be replaced by KO. Strictly this approximation is 
not necessary, since the integration over K can be evaluated numerically but in order 
to derive analytic results, in relation to the effect of chromatic aberration on the 
inelastic image (see 4 5 ) ,  this simplification is made. 

The  replacement in equation (6) of K by KO leads to the following equation: 

iKo 
x exp{iK,y(E, 0‘))0(0’)exp( - __ M (0 - 0 ’ ) .  rl) de de’ dE. (8) 

In  order to calculate the @.,(E, 0) consideration of the angular-energy distributions and 
of the localization of inelastic electron scattering must be made. 

It is noted that in equation (8) the assumption has been made that electrons with 
the same E and n are coherent. However for a given resultant energy loss E, the 
inelastically scattered electron may lose energy by different processes and by different 
amounts. E is a sum of individual terms E,, E,, E,, ... E,. More exactly equation (8) 
should not only contain a summation over n but a further summation of all possible 
sets (E l ,  E,, ... E,) = E and the, integration over E is omitted. 

3. Angular-energy distributions and the localization of inelastic electron 
scattering 

3.1. Angular-energy distributions 
I n  this section the problem of calculating the angular-energy distributions for n 

inelastic events is considered. As stated in 4 2, electrons which have been inelastically 
scattered a different number of times are incoherent and the scattered wave YI(E, 0) 
can be calculated by the incoherent superposition of the On for each E value, that is 

m m 

Iy,(E, = 2 \@.(E, = 2 pnl+n(E, 0)12* (9) 
n = l  n = l  
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P, is the Poisson distribution (tin,), exp( - t/A,),h! for independent scattering 
processes (eg Howie 1963); t is the specimen thickness and A, is the mean free path 
for inelastic electron scattering. If the inelastic processes leading to different n are 
incoherent, then the O,(E, e) are given by 

@,(E, e)@,*(E, 0) = PnD,(E, e) P n Q n ( q f n ( E )  (10) 

where Q,(e) is the angular distribution after n inelastic events with energy distribu- 
tion f n ( E )  calculated by a simple folding procedure (see eg Crick and Misell 1971). 
In  equation (10) the dispersion relationship, that is, the dependence of E on 8, has 
been neglected ; this approximation is justified further below. The inelastic wave 
@,(E, e) can be written as 

(‘D,(E, e) = P,1’2{D,(E, 6)}1’z exp{ipn(E, e)}. (11) 

The phase term p n  is assumed to be independent of 0, consistent with the assumption 
of coherence for a given E over all B (provided 6 is small, see Howie 1963, Cundy et 
al. 1969). If p, is a function of E only and electrons with different E are incoherent 
(pn for different E values are not correlated), then the exp(ip,) factors cancel for a 
given E, since the phase factor occurs as a product @,(E, 8)Q,*(E, e’) in equation (8). 

I t  is strictly unnecessary to assume that @,(E, e) is a separable function of E and 
8 as in equation (10) ; the dielectric formulation for inelastic scattering in the volume 
of the specimen (neglecting surface excitations and retardation effects, see review 
by Daniels et al. 1970) gives the following expression for l+l(E, (Hubbard 1955, 
Raether 1965) 

oI = 
electric constant; q1 = (2rr/h0)(B2+ 
calculated by a convolution of ]+llz with l + l l z  over E and 8, that is 

8 E  = E/2Eo and E(q l ,  E )  is the wavevector, frequency dependent di- 
is Iqll. The term #z(E, e) may then be 

neglecting elastic electron scattering which may be included by a further convolution 
(eg Misell 1970) ; C = - (22aHEOuI)-1.  Equation (13) represents a double integration 
since the 8 integration can be simplified by an integration over the azimuthal angle of 
scattering for a cylindrically symmetric angular term (see eg Daniels et al. 1970). 
A knowledge of Im{l/e(B, E)}  is not readily available and two further simplifications 
to equation (13) are usually made (Daniels et al. 1970), namely €(e, E )  N ~ ( 0 ,  E )  over 
the 8 integral and B E  is constant (or negligible) over the E integral. These two approxi- 
mations enable the 8 and E integrations to be separated and this then is the equivalent 
of the formulation of @,(E, e) given above (equations (10) and (11)). These approxi- 
mations appear to be totally justified by the results of Daniels et al. (1970) on the 
calculation of ~ ( 0 ,  E )  from electron energy loss data. 
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The expression for @,(E, 8)@,*(E, e’) in equation (8) is then 

@,(E, V n * ( E ,  0’) = ~ n 4 n ( 0 ) 9 n * ( e ’ ) f n ( E )  (14) 
where 9 is a function of 8 only, namely Q,(6)1’z. 

Hence the @>,(E, e) are calculated on the basis of the following assumptions, which 
are not inconsistent with previous theoretical and experimental work : (i) inelastically 
scattered electrons are incoherent with the main beam and the elastic scattering, 
This justifies the separate treatment of the inelastic image. (ii) electrons with differing 
n are incoherent even for the same E. (iii) @, may be written as a separable function 
of 8 and E. (iv) inelastic electrons with the same E and n are coherent over all 8. 
This is strictly valid only for small q (Howie 1963, Metherell 1967, Cundy et al. 1969). 
A further assumption, which is unlikely to be valid, is made to simplify the analysis: 
(v) electrons inelastically scattered with same resultant E and a given n are coherent. 
An electron incident on the specimen can excite various processes leading to the same 
E, where the energy distribution f n ( E )  is calculated from 

P E  

For n > 1, E can result from the set ( E l ,  Ez ,  ... E,). If electrons only with the same 
set are coherent then 

@,(El, Ez, 0 * * E n ,  e)@n(E,, E,, **.En,  e’) = Pn$n(e)$n(0’)fi(E1) * - f i (En  + E n  - 1) 

(15) 
The  coherence of inelastic electrons over the complete energy distribution has not 

been considered in the literature. The  experimental work uging energy selecting elec- 
tron microscopes has concentrated on the formation of images within a narrow energy 
loss band k 1 eV (eg Watanabe and Uyeda 1962, Castaing et al. 1966a,b,c) and in energy 
analysing electron microscopes, the effective energy loss interval is about 2 eV 
(eg Cundy et a2. 1967, 1969). It would be of interest to examine these inelastic 
images using either a larger energy gate or decreasing the resolution of the electron 
spectrometer. For the crystalline specimens examined, the energy loss profiles are 
of a discrete character, for example, A1 (Watanabe and Uyeda 1962), Si (Castaing et 
al. 1966a), electrons with different n are quite well separated and it is difficult to 
make an assessment of the coherence of electrons with the same E but different n. 
Of particular interest is the coherence of the inelastic electron scattering in organic 
and biological materials, where the energy halfwidth of f , (E)  is 15-20 eV (Marton e t  
al. 1955, Swanson and Powell 1963, Johnson and Rymer 1967, Jager 1969). 

The  angular distributions $,(e) include the modifications on the inelastic scatter- 
ing due to elastic electron scattering. In  an amorphous specimen these distributions 
may be calculated by a convolution procedure involving intensity distributions (Crick 
and Misell 1971) or for a crystalline specimen an n beam calculation is used (eg 
Metherell 1967, Doyle 1971). However, the localization of inelastic electron scattering 
must be considered before information is available on @,(E, e) in a complete form. 

3.2. Localization of inelastic scattering 
The parameter which describes the screening of the electrons in the solid from 

the incident electron is 1 / ~ ( q ,  E )  (Hubbard 1955, Nozihes and Pines 1959, Raether 
1965). The  screening is a measure of the localization of the inelastic scattering. 
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One electron excitations including core excitations, and thermal diffuse scattering 
(which contributes only a small amount to the scattering within the normal objective 
aperture) are localized phenomenon (eg Cundy et al. 1969, Howie 1970). The  plasmon 
excitation in metallic specimens is a delocalized phenomenon over a radius of about 
20 A (eg Cundy 1968, Cundy et al. 1968). For the plasmon excitation in organic and 
biological materials, the localization can be considered from the behaviour of l/c(O, E) ;  
a small value for this reciprocal implies a localized excitation. In  particular, the be- 
haviour of Im{l/c(O, E)}  and Re{l/c(O, E)} for metallic (nontransition metals) and 
amorphous specimens is considered in the region of the plasmon energy E,. 
Re{l/c(O, E)}  is nearly zero in the region E 1: E, (Daniels et al. 1970) and 
Im{l/c(O, E)}  is a direct measure of the energy loss profile, obtained under single 
scattering conditions at 0 2: 0. The energy loss profile for the nontransition metals 
can be described by a Drude free electron model (Daniels et al. 1970) and a similar 
profile accurately describes the 20-25 eV plasmon loss in amorphous carbon (Burge 
and Misell 1968), organic materials (Swanson and Powell 1963, Jager 1969, hlisell 
and Crick 1969) and materials of biological significance (Marton et al. 1955, Johnson 
and Rvmer 1967). Hence 

The parameter T is related to the energy halfwidth of the profile by T N l/El/,. 
For E 1: E,, - Im(l/e) 1: Ep/E1,,, that is, the screening is related directly to the half- 
width of the energy loss profile for plasmon excitation. In  the case of Al, E,  = 15 eV 
and E,,, = 0.8 eV (Raether 1965) and - Im{l/c(O, ED)) = 18; for amorphous carbon 
E,  N 20-25 eV and E,,, = 15-20 eV and -Im{l/e(O, E,)} 1: 1.5. Both results are 
consistent with optical data. This relation between the screening and the halfwidth 
Eli, is not just a result of using the Lorentzian above, but a similar result can be 
derived for gaussian and maxwellian profiles, provided that the sum rule (Nozikres 
and Pines 1959) 

TE,2 Im -- E d E  = - -- 1; EJ 2 
is satisfied 

The implication of these calculations is that the plasmon excitation in organic 
and biological materials is a localized phenomenon and Qn(E, e) is characteristic of 
the specimen structure on a short range scale. 

4. Image formation by the inelastic component. Coherence interval AK is 
finite 
If the inelastically scattered electrons with a given n are coherent within an energy 

band between E and E+ A E  (K and K+ AK), then the wavefunctions $n(K, r o )  
are superimposed coherently within this interval. Electrons within different energy 
bands are superimposed incoherently. If it is assumed that the inelastic wave in the 
back focal plane of the objective lens Qn(E, 6) is a separable function of 8 and E (see 
5 3.1), then the equation for the image intensity is 

xexp[-iKo{y(E,6)-y(E,e’)}]exp(- =(O-O’ ) .  iKo ri 
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where 
( P  + 1)AE 

P A E  

The  constant phase factor in +n for a given n and within the interval E, E+AE is 
irrelevant because electrons outside a given AE are superimposed incoherently. 

If the scattering by the specimen exhibits cylindrical symmetry then equation (17) 
simplifies (for normal bright field electron microscopy) to give 

n = l  p A E = O  

where +n(0)+n*(e’) = dn(0)+,(e’) for a constant phase factor independent of 0 and 
+n( e) is taken as a real quantity. 

5. The effect of chromatic aberration on the inelastic image 
In  order to investigate the effect of the energy loss distribution on the image 

formed by the inelastic component, the integration over E in equation (8) is considered. 
Using equation (14) equation (8) is rewritten as 

iKo 
M 

x qe)o(e’) exp (- - (e  - e ’ )  . ri) de de’ 

Ln(8,e’) = /;exP( - 2E, (e2 - e12))fn(q dE. 

(19) 

(20) 

where 
iKoC,E 

iKox(6) is the phase shift term including only the spherical aberration and defocusing 
terms (see equation (7)). 

The  evaluation of Ln(8, e’) requires a model for the distributions fn(E). The  
fn(E) are calculated by a repetitive folding of f l ( E ) ;  fl(E) is well approximated by 
a Lorentzian (equation (16)) for carbon, organic and biological materials (curve 
fitting based on the results of Marton et al. 1955, Swanson and Powell 1963, Johnson 
and Rymer 1967, Jager 1967; method given by Burge and Misell 1968) and for the 
nontransition metals (eg Raether 1965). However, with the lorentzian lineshape for 
fl(E), it is not possible to evaluate the fn(E) analytically and in general the integration 
(20) can only be evaluated numerically except for n = 1. As an approximation to 
f , (E) ,  the symmetrical gaussian curve ( b / v ) l l 2  exp{-- b(E - E p ) 2 }  is used in equa- 
tion (20), that is 

bE2 
x exp (- --) d ~ .  
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Except for the lower limit -nE, on the E integral, this integral is the Fourier trans- 
form of a Gaussian; for E < - nE,, the exponential factor is negligibly small and the 
lower limit may be replaced by a negative infinite limit, that is 

The optimum conditions for image formation by the inelastic component, 
neglecting for the present the elastic contribution to the image intensity, can 
be considered on the basis of equation (22). The 8 dependence of the oscillatory 
term is the same as that of the defocusing term in x(e), that is, - iKo4f(02 - 8’2)/2. 
With n = 1, corresponding to a main peak at E, in the energy loss distribution and 
assuming that the multiple peaks nE, are not significant, the maximum value of the 
oscillatory exponent in equation (22) is calculated to be -91-5 rad for E ,  = 20 keV 
(E, = 25 eV, a = 0.01 rad, C, = 0.2 cm) and - 10.6 rad for E, = 100 keV 
(a = 0.005 rad). These phase shifts are an order of magnitude greater than the 
corresponding spherical aberration phase shifts (-3.66 rad and -0.53 rad respec- 
tively, C, = 0.2 cm). These large phase shifts can be exactly cancelled by underfocus 
of the objective lens; for Eo = 20 keV, 4f = -2.5 pm and for E, = 100 keV, 
Af = -0.5 pm. This partial cancellation of the chromatic aberration defect is 
expected because the gaussian image plane has been displaced by underfocusing to 
focus electrons with energy E,-E,. For a specific n, the corresponding defocus 
necessary to cancel that particular oscillatory term is Af = -C,nE,/E, and this 
corresponds to focusing of electrons with energy E, - nE,. Thus depending on the 
specimen thickness, an optimum defocusing can be calculated in order to minimize 
the effect of chromatic aberration on the inelastic image. This underfocusing will 
produce a large chromatic aberration effect on the elastic image; the equivalent phase 
shift is + iKoCCnE,(O2 - 8’2)/2E, introduced into the elastic wave (see 5 4 of I). 
This point is discussed further below, where a comparison of the inelastic intensity 
l+,(e)i2 and the elastic intensity lYE(e)12 is made. 

The cancellation of the phase term in equation (22) leaves as the main chromatic 
aberration effect the exponential decay term 

If n = 1, then the 8 dependence of the exponential factor with b = 0.007 eV-2 
(corresponding to the distribution f , (E) for carbon) is 

8 = 0.002 rad 0 = 0.003 rad 8 = 0.004rad 
E ,  = 20keV 0-47 0.02 0.00 
E, = 100eV 0.84 0.28 0.07. 

Thus the Ll(e) term is negligible for 8 2: x ,  unless 8 N 8’. For a in the range 
0.0025-0.02 rad, the contribution from L,(8, e’) to the 8 and 8’ integrands in equa- 
tion (19) will only be significant for small arguments and a limited number of angular 
values where 8 N 8’. The conclusion is that for a broad f,(E) the chromatic aberra- 
tion effect is not very dependent on the aperture size. This is consistent with the recent 
calculations of Misell and Crick (1971) on the effect of chromatic aberration on the 
image of a ‘biological structure’ ; using the incoherent approximation, it was found 
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that the convolution effect of the chromatic aberration on the inelastic image was a 
slow varying function of a. I t  is noted that the above conclusions were arrived at by 
using a gaussian model for the energy loss distributions and in general it is not possible 
to cancel completely the exponential phase term by a single value for the underfocus. 
In  the case where f , ( E )  is discrete (eg Al, b = 3.0 eV-2), the exponential factor 
decreases less rapidly with 0 increasing, but there is still a significant attenuation 
effect. The  behaviour of L,(8, e') explains why for even a uniform illumination of 
the objective aperture, that is, I+,(e)j2 is constant for 0 < 0 < a, that the chromatic 
defect is overestimated by the equation 

g ( E )  is a measure of the energy loss, for example, the most probable loss (Cosslett 
1956), the energy halfwidth of the loss distribution (Cosslett 1969, where a factor of 
4 is introduced into equation (24) for focusing on the most probable energy loss), 
and for materials exhibiting multiple plasmon losses, g ( E )  = (t/A,)E, or 
2.35 E,(t/A,)l'z (Hirsch and Humphreys 1968); experimental estimates of g ( E )  have 

Table 1. The ratio of the inelastic to ~ elastic electron scattering, 
ki(u)/ke(u), for a specimen of thickness t A and objective aperture semi- 

angle U radt 

Carbon 
(amorphous) 

50 
100 
200 
300 
400 
500 

Carbon 
(amorphous) 

50 
100 
200 
300 
400 
500 

t (4 

t (A) 

Aluminium 

t (A) 
50 

100 
200 
300 
400 
500 

Ea = 20 keV 

a = 0.01 rad 
18.0 (24.1) 
19.2 (26.3) 
21-9 (31.9) 
25.4 (40.0) 
30.3 (52.1) 
36.9 (70.8) 

Eo = 100keV 

a = 0.005 rad 
17.0 (22.7) 
17.3 (23.4) 
18.1 (24.8) 
18.9 (26.4) 
19.7 (28.1) 
20.6 (30.0) 

Eo = 20keV 

a = 0.01 rad 
4.5 (15.0) 
4.8 (19.2) 

6.8 (66.4) 
8.2 (145) 

10.2 (346) 

5.7 (33.7) 

A, = 323 A 

a = 0.02 rad 
6.5 (8.8) 
7.2 (10.0) 
8.9 (13.2) 

14.4 (25.8) 
19.0 (38.0) 

11.2 (18.1) 

h E  = 1314A 

a = 0.01 rad 
5.9 (8.0) 
6.1 (8.3) 
6.5 (9.0) 
6.9 (9.8) 
7.4 (10.7) 
7.9 (11.7) 

A, = 163 A 

a = 0.02 rad 
1.9 (6.4) 
2.1 (9.0) 
2.8 (18.5) 
3.8 (41.9) 
5.1 (103) 
7.0 (270) 

A, = 223 A 
(171 A) 

a = 0.04 rad 
2.9 (3.9) 

4.6 (6.9) 
6.3 (10.4) 
8.8 (16.1) 

3.4 (4.7) 

12.5 (25.6) 

A, = 775 A 
(583 A) 

a = 0.02 rad 
2.7 (3.7) 
2.9 (3.9) 
3.1 (4.3) 
3.4 (4.8) 

4.1 (6.1) 

AI = 263 A 

CI = 0.04 rad 

3.7 (5.4) 

(90 A) 

1.2 (44) 
1.4 (6.1) 
2.1 (14.1) 
3.0 (35.1) 
4.3 (92.8) 
6.2 (257) 
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Aluminium 

t (4 
50 

100 
200 
300 
400 
500 

Gold 

t (4 
50 

100 
150 
200 
250 

Gold 

t (4 
50 

100 
150 
200 
250 

Ea = 100 keV 

a = 0.005 rad 
3.7 (12.4) 
3.8 (13.3) 
4.0 (15.5) 
4.2 (18.2) 
4.4 (21.5) 
4.7 (25.7) 

Eo = 20 keV 

a = 0.01 rad 
1.2 (3.9) 
1.1 (4.4) 
1.9 (10.0) 
3.1 (21.3) 
4.4 (42.9) 

E ,  = 100 keV 

a = 0.005 rad 
1.5 (4.4) 
1.2 (3.8) 
0.82 (2.7) 
0.58 (2.0) 
0.50 (1.8) 

D. L. Misell 

Table 1 (cont.) 

AE = 659 A 

a = 0.01 rad 
1.6 (5.3) 
1.6 (5-8) 
1.8 (7.1) 
1.9 (8.6) 
2.1 (10.6) 
2.3 (13.2) 

RE = 1 5 A  

a = 0.02 rad 
0.59 (2.0) 
0.76 (3.4) 
1.3 (8.0) 
2.1 (17-7) 
3.1 (37.8) 

AE = 598, 

a = 0.01 rad 
0.57 (1.6) 
0.55 (1.6) 
0.49 (1.6) 
0.44 (1.6) 
0.45 (1.7) 

A, = 985 A 
(308 A) 

a = 0.02rad 
1.0 (3.5) 
1.1 (3.9) 
1.2 (4.8) 
1-3 (6-1) 
1.5 (7.7) 
1.6 (9.8) 

A, = 182A 

a = 0.04rad 
(68 4 

0.39 (1.3) 
0.71 (3.2) 
1.2 (7.8) 
2.0 (17.3) 
2.9 (37.2) 

A, = 629 A 
(232 A) 

a = 0.02rad 
0.27 (0.79) 
0.33 (1.0) 
0.41 (1.4) 
0.56 (2.0) 
0.78 (3.1) 

t The scattering model for the inelastic electron scattering is a composite 
model; figures in parentheses correspond to a free atom calculation for h,(a). 
The mean free path value for inelastic electron scattering is A, and that for 
elastic scattering is RE. 

been given by Verdier (1968). I t  is suggested that the maximum values for 8, R ,  in 
equation (24) should be replaced by the value of 8 for which the exponential factor 
decreases to (say) 0.5 of its value at 8 = 0 ;  for carbon 6’ = 0.002 rad at 20 keV and 
6’ = 0.0028 rad at 100 keV. For nonuniform illumination of the objective aperture, 
Cundy et al. (1968) replace a in equation by Om, the mean angle of scattering; again 
this leads to an overestimate of Y,. 

Assuming that the inelastic component carries useful structural information on 
the specimen, then the decision on whether to defocus the objective lens by the large 
amounts given above will depend on the magnitude of the elastic and inelastic contri- 
butions transmitted by the objective aperture, that is Jr 1: \Y”E(6)[z de = he(%) 

2 p n  rn l+n(e)~zde = hi(a)* 
n = l  0 0  

he(&) and hi(@) are respectively the fractions of the incident electron beam that are 
scattered within the objective aperture. For carbon, aluminium and gold iYE(e)1 
has been calculated from the free atom formulation; for the solid state, particularly the 
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crystalline state, this model can only give a reasonable estimate for h,(cr). The term 
l+,(0)lz is calculated using two models, namely, the free atom theory or more realisti- 
cally a composite model, Bohm-Pines/Ferrell/free atom expression (see Misell and 
Crick 1969 for details and references). In  table 1 the values for hi/h, for several film 
thicknesses t a of carbon, aluminium and gold and for several objective aperture sizes 
are given. The  main figures correspond to hi/h, for the composite inelastic scattering 
model ; the figures in parentheses correspond to the free atom calculations. 

6. The effect of the spatial and chromatic incoherence of the electron source 
on the inelastic image 
The effect of the spatial incoherence and the chromatic incoherence of the incident 

electron beam can be included into the calculation of the inelastic image. In  order 
to simplify the analysis, spatial and chromatic incoherence will be treated separately 
within the framework of the transfer theory. 

6.1. Spatial incoherence 
The incident electron beam in monochromatic (KO = constant) and the spatial 

coherence is represented by the distribution of KO, F(K,). The inelastic wave for a 
particular n can be written as 

$n(Ko, K ,  ro) = $n(K, ro) ~ x P ( ~ K o  ro) 
since the electron scattering properties of the specimen are not dependent on the 
incident wavevector KO. The  function F(K,) represents the angular distribution of 
the incident electron beam (see Lenz 1965, 4 3 of I). The  wavefunctions $n with 
different KO and K are superimposed incoherently (weighted with the distribution 
function F(K,) ) ;  equation (2) for the image intensity is then 

x exp{iK, . ( r ,  - ro’)}F(Ko) dr, dr,’ dK, dK.  (25 ) 
Using the definition equation (4) for the Fourier transforms of $n and G, the equation 
for j,( ri) becomes 

xexp(-27ii(v-v’) F(K,)dvdv’dK,dE. (26) 

Equation (26)  is transformed to real angular coordinates in the back focal plane with 

2 m  KO e = -  
“ K  

e = -  and 
K 

and 0, defines the angular coordinate of the incident electron beam. With this 
transformation, equation (26) becomes 

ji(ri) = $ 1,” (g)’ / 1 1 @n(E, o+ec)@n*(E,  e’+ec)H(E> e)H*(E> 0’) 
n = l  

i K  
M 

xexp(--(e-e’). ri ) I , (e ) de de’ de, d E  
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or with K _N KO 

~exp[- iK,(y(E,  e ) - y ( E ,  e’)}]exp(- z(e-O’ )  iKo . r l ) fn(E)dede‘dOodE 

(29) 
where @.,(E, 8 + 8,)@,*(E, 8’ + e,) has been taken as P,+,(O + 0,)+,*(6’ + Bc)fn(E) 
(see 4 3.1). 

Evidently equation (29) is not very amenable to numerical evaluation since it 
contains, at the least, a triple angular integration (in the cylindrically symmetric case). 
The  main comment on the inclusion of the spatial coherence of the electron source 
is that Io(6,) has a comparable angular halfwidth to l+,(e)lz for inelastic electron 
scattering. Thus Io(e,) introduces into the inelastic scattering a further degree of 
incoherence; it is possible that in this case an incoherent approach would be a simpler 
and adequate solution to the problem (Crick and Misell 1971). 

6.2. Chromatic incoherence 
The incident electron wave is spatially coherent (KO is constant) and the energy 

distribution of the incident electron beam is represented by F(Ko). Electrons with a 
different K O  are assumed to be incoherent. The  electron is scattered inelastically in 
the specimen, where the transmitted electron has an energy represented by K,; 
K ,  - K O  represents the energy loss of the scattered electron. Only electrons with the 
same KO and K ,  are coherent for a given n ;  electrons with a different KO or K ,  are 
superimposed incoherently, that is 

ji(ri) = $ Sm jJ#n(K1-Ko+Ko’, ro)#n*(K1-Ko+Ko’, ro’) 
n = l  0 0 

ri ri 
x G K,, - ro G” K,, - - T O ’  F(K0) dro dro’ dK0 dK,. (30) ( M 

KO’ represents the most probable energy of the incident electron beam and KO’ 
corresponds to E = 0. Equation (30) may be transformed to 

W 

.ji(ri) = 2 1:; 1; I 1 ~ n ( ~ 1 -  E ,  V)S,*(E, - E ,  v‘) T(E,, v) T*(E, 7 v’) 
n =  1 

x exp ( - 2ni(v -v’) . - N ( E )  dv dv’ dE dE,. 
M ri) (31) 

The  thermal energy distribution N(E) is centred on E = 0 (see 4 4 of I). 
In  8 coordinates the final equation for the image intensityj,(ri) is 

(0 -0’) . rAfn(E,  -E )N(E)  de de’ dE dE,. (32) 
1 

I n  practice the lower limits on the E integrations may be replaced by approximately 



Image formation in the electron microscope 11 81 1 

- 1 eV, since N(E) decreases rapidly to zero for large arguments and f n ( E )  = 0 for 
E < 0. The  chromatic incoherence of the source introduces a further incoherence 
into the inelastic component of the transmitted electron beam and the incoherent 
approximation may be a valid approach. 

The  effect of partial chromatic coherence of the incident electron beam may be 
included into the above analysis (see 5 4). 

7. Conclusion 
A treatment of image formation by the inelastic component of the transmitted 

electron beam has been given. The effects of the energy distribution and chromatic 
aberration on the inelastic image have been considered. If the inelastic component 
forms an acceptable image, then the effect of chromatic aberration may be partially 
cancelled by underfocusing of the objective lens. It is also noted that the chromatic 
defect is not very dependent on the objective aperture size. The use of the semiangle 
CI in the equation Y, = C,g(E)a/E,, even for uniform illumination of the objective 
aperture, is an overestimate of the chromatic aberration. This conclusion is consistent 
with recent experimental estimates on the chromatic aberration for biological speci- 
mens (Nagata and Hama 1971). The  value of minimizing the effect of the chromatic 
aberration on the inelastic component will depend on the structural information 
carried by the inelastic component and the ratio of inelastic to elastic scattering 
transmitted by the objective aperture. The former point is related to the localization 
of the inelastic electron scattering; the present work indicates that in biological 
materials the localization may be about 2-5 8. On the latter point, the ratio hi( a)/he( a )  
is usually significantly greater than unity; even for gold, where the inelastic mean free 
path is about ten times larger than the elastic mean free path, hJh,  can be signifi- 
cantly greater than unity (see table 1). (The inelastic mean free path calculated from 
the plasmon excitation is probably too large, since one electron excitations are expected 
to be a predominant mechanism for inelastic electron scattering in the transition 
metals.) 

The degree of coherence of the inelastic wave has been discussed in respect of 
the available experimental and theoretical evidence ; the only decisive conclusion is 
that electrons with the same energy loss E and same n exhibit phase coherence. The  
possibility of coherence of the inelastic wave over a finite energy interval has been 
included into the calculation of the image intensity. Because of the incoherence of 
of the inelastic wave with respect to the unscattered and elastic waves, the intensity 
distribution in the image plane due to the inelastic component can be considered 
independently of the elastic-unscattered image. The  essential incoherence of the 
inelastic component indicates that phase contrast effects with the inelastic image are 
unlikely. 
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